Abstract

Adequate primary explosives such as lead azide mostly contain toxic ingredients, which have to be replaced. A new candidate that shows high potential, potassium 1,1'-dinitramino-5,5'-bistetrazolate (K2DNABT), was synthesized by a sophisticated synthetic procedure based on dimethylcarbonate and glyoxal. It was intensively characterized for its chemical (X-ray diffraction, EA, NMR and vibrational spectroscopy) and physico-chemical properties (sensitivity towards impact, friction, and electrostatic, DSC). The obtained primary explosive combines good thermal stability with the desired mechanical stability. Owing to its high heat of formation (326 kJ mol(-1)) and density (2.11 g cm(-3)), impressive values for its detonation velocity (8330 m s(-1)) and pressure (311 kbar) were computed. Its superior calculated performance output was successfully confirmed and demonstrated by different convenient energetic test methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call