Abstract

Elucidating geodynamic processes at depth relies on a correct interpretation of petrological and geochemical features in magmatic records. In southern Tibet, both potassic volcanic rocks and adakitic intrusions exhibit high Sr/Y and La/Yb, and low Y and Yb concentrations. But these two rock types have contrasting temporal–spatial distributions and isotopic variations. Here we present a systematic study on the postcollisional potassic and adakitic rocks in order to investigate their petrogenetic links with the coeval mantle-derived ultrapotassic rocks and shed light on the potential input from underthrusted Indian continental crust. We found that adakitic intrusions with higher K2O/Na2O tend to display lower Y and higher SiO2, suggesting that the mantle-derived ultrapotassic melts, showing relatively high Y and Yb concentrations, only played a minor role in adakitic magmatism. Therefore, the unradiogenic 143Nd/144Nd and the dramatic decrease of zircon εHf(t) values since ~35Ma shown by postcollisional adakites should be interpreted as reflecting the crustal input from Indian plate. Unlike adakitic intrusions in southern Lhasa subterrane, potassic volcanic rocks share similar spatial distributions with ultrapotassic rocks, and their isotopic discrepancy is diminishing with volcanic activity becomes younger and migrates eastward. Evidence from whole-rock Pb and zircon Hf isotopes further indicates that potassic volcanic rocks are more likely to originate from partial melting of the overthickened and isotopically heterogeneous Lhasa terrane crust rather than the underthrusted Indian continental crust. The elevated Rb/Sr and varying Sr/CaO in potassic volcanic rocks provide an argument for sanidine+plagioclase+clinopyroxene as the major fractionating phases during magmatic differentiation. These findings not only highlight the significance of potassic and adakitic rocks in providing constraints on the geodynamic processes beneath southern Tibet, but also imply that special caution is needed if we attempt to probe into the nature of mantle lithosphere using isotopic tracers of the Tibetan ultrapotassic rocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.