Abstract
Neural Radiance Field (NeRF) has emerged as a promising alternative for photorealistic rendering. Despite recent algorithmic advancements, achieving real-time performance on today’s resource-constrained devices remains challenging. In this paper, we identify the primary bottlenecks in current NeRF algorithms and introduce a unified algorithm-architecture co-design, Potamoi , designed to accommodate various NeRF algorithms. Specifically, we introduce a runtime system featuring a plug-and-play algorithm, SpaRW , which significantly reduces the per-frame computational workload and alleviates compute inefficiencies. Furthermore, our unified streaming pipeline coupled with customized hardware support effectively tames both SRAM and DRAM inefficiencies by minimizing repetitive DRAM access and completely eliminating SRAM bank conflicts. When evaluated against a baseline utilizing a dedicated DNN accelerator, our framework demonstrates a speed-up and energy reduction of 53.1 × and 67.7 ×, respectively, all while maintaining high visual quality with less than a 1.0 dB reduction in peak signal-to-noise ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.