Abstract

Protection of Telomeres 1 (POT1) is a conserved nucleic acid binding protein implicated in both telomere replication and chromosome end protection. We previously showed that Arabidopsis thaliana POT1a associates with the TER1 telomerase RNP, and is required for telomere length maintenance in vivo. Here we further dissect the function of POT1a and explore its interplay with the CST (CTC1/STN1/TEN1) telomere complex. Analysis of pot1a null mutants revealed that POT1a is not required for telomerase recruitment to telomeres, but is required for telomerase to maintain telomere tracts. We show that POT1a stimulates the synthesis of long telomere repeat arrays by telomerase, likely by enhancing repeat addition processivity. We demonstrate that POT1a binds STN1 and CTC1 in vitro, and further STN1 and CTC1, like POT1a, associate with enzymatically active telomerase in vivo. Unexpectedly, the in vitro interaction of STN1 with TEN1 and POT1a was mutually exclusive, indicating that POT1a and TEN1 may compete for the same binding site on STN1 in vivo. Finally, unlike CTC1 and STN1, TEN1 was not associated with active telomerase in vivo, consistent with our previous data showing that TEN1 negatively regulates telomerase enzyme activity. Altogether, our data support a two-state model in which POT1a promotes an extendable telomere state via contacts with the telomerase RNP as well as STN1 and CTC1, while TEN1 opposes these functions.

Highlights

  • Eukaryotes face end-protection and end-replication problems due to the linear nature of their chromosomes and the limitations of conventional DNA replication

  • We investigated how the interplay between POT1a and CST in Arabidopsis promotes telomere maintenance

  • The TERT interaction with telomeres was unperturbed in plants doubly deficient in POT1a and TER2, indicating TERT is not tethered to telomeres through the TER2 RNP

Read more

Summary

Introduction

Eukaryotes face end-protection and end-replication problems due to the linear nature of their chromosomes and the limitations of conventional DNA replication. Telomerase averts these crises using its RNA subunit (TER) as a template to reiteratively synthesize Grich repeat sequences on the 39 single-strand extension (Goverhang) of the chromosome terminus. Both the single (ss) and double-strand (ds) portions of the telomere are host to protein complexes that modulate telomerase action and distinguish natural chromosome ends from double-strand breaks [1,2,3,4]. These reactions are highly coordinated, and driven by the exchange of large replication/processing complexes on the G-overhang

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call