Abstract

The presently employed posture for Functional Electrical Stimulation (FES) assisted standing in spinal cord injury (SCI) patients utilises the active locking of knee joints by tetanically stimulating the quadriceps muscle. The hip joints are in hyperextension and the ankle joints remain free. The upper limbs are used for balancing. This posture requires minimal corrective forces exerted by the hands, the weight is transferred across the legs, while very limited forward-backward sway is permitted. Knee jack-knifing may occur in the instance when the gravity knee bending moment exceeds the moment generated by the quadriceps muscle. Because of these effects and fatiguing of the M. quadriceps the standing time is short, lasting from several minutes up to an hour, depending on the condition of the patient's muscles. Cyclical FES with a duty cycle of 10-20 seconds (on/off) fatigues muscle considerably less. The use of different postures for standing requiring activation of different muscles permits the application of cyclical FES. The cyclic FES results in prolonging standing times by a factor of two to five. Utilising this improvement some patients can stand for up to five hours at a time. This functional achievement is comparable to the standing time of a normal man. The incorporation of the principle of posture switching also prolongs standing in patients with weak muscles, because of the possibility of cyclical coactivation of different synergistic muscle assemblies. It is shown that posture switching can be carried out automatically and that patients adapt quickly to it. In addition using co-contraction of two or three muscles with posture switching does further expand the range of suitable patients and improves standing with an increased permissible range of body sway. Also, the FES antigravity action obtained raises hopes for substantially improving FES induced reciprocal gait.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.