Abstract

The present work combines ergonomics with the posture prediction in the assembly process to avoid musculoskeletal issues of human operator. For improved productivity the operator should be in a better work environment and in sound health. The purpose of this paper is to provide a different perspective to avoid ergonomic risk factors in manual assembly. Here, a human is modeled as 20-DOF as modeled in robotic analysis and simulated in a virtual environment. In the present study, two objective cost functions i.e. joint discomfort function and energy expenditure function have been employed for evaluating the optimized posture. For posture prediction, a combined multi-objective optimization (MOO) method is used and the objective cost functions are minimized i.e. less joint discomfort and less energy in MOO method required to do the manual assembly operation and consequently, the results are compared and finally the movements are tested using REBA technique.

Highlights

  • Precise simulation of assembly posture is necessary of the posture prediction for ergonomic assessment

  • Manual manipulation of human models is required by the ergonomics simulation tools, which results in errors and less efficiency

  • The present study focuses on a 20-DOF human model for posture prediction

Read more

Summary

Introduction

Precise simulation of assembly posture is necessary of the posture prediction for ergonomic assessment. The accuracy of the posture prediction method in non-automated and semi automated workplace should satisfy the ergonomic condition. Most importantly, this method helps in providing a better understanding in predicting realistic postures for varied assembly conditions for the ergonomic analysis of the human performance. This work proposes development of a generalized posture prediction method in assembly job simulation for the manual assembly tasks. A human model is proposed, where the human body represents a system of kinematic chain with a number of revolute joints connecting the series of links. The model is same as in robotics; the open chain mechanism is used for analysis and application which are connected by joints serially to the links [1].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call