Abstract

In the previous papers, the authors investigated a robotic cat which could restore its attitude during free fall by twisting and controlling its body. The principle of the twisting motion was then elucidated: the robotic cat could rotate its body by 180 degrees turn within 0.6 seconds when released from an upside-down position. In this paper, 3D midair attitude detection and landing control of a newly developed robot with multi-articulated twin legs were studied. A postural detection method using the Enter angles generated by the 3D attitude angles detected by three rate gyrosensors mounted on the robot was proposed, and a landing control method for the twin legs using 4 pairs of antagonists composed of artificial rubber muscles was described. Experiments conducted with this robot reveal that the attitude of the robot thrown in an arbitrary direction could be detected and the legs could be successfully controlled to turn towards the ground for landing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.