Abstract
This study concerned the effects of brisk perturbations applied to the shoulders of standing subjects to displace them either forwards or backwards, our aim being to characterise the responses to these disturbances. Subjects stood on a force platform, and acceleration was measured at the level of C7, the sacrum and both tibial tuberosities. Surface EMG was measured from soleus (SOL), tibialis anterior (TA), the hamstrings (HS), quadriceps (QUAD), rectus abdominis (RA) and lumbar paraspinal (PS) muscles. Trials were recorded for each of four conditions: subjects’ eyes open (reference) or closed and on a firm (reference) or compliant surface. Observations were also made of voluntary postural reactions to a tap over the deltoid. Anterior perturbations (mean C7 acceleration 251.7 mg) evoked activity within the dorsal muscles (SOL, HS, PS) with a similar latency to voluntary responses to shoulder tapping. Responses to posterior perturbations (mean C7 acceleration −240.4 mg) were more complex beginning, on average, at shorter latency than voluntary activity (median TA 78.0 ms). There was activation of TA, QUAD and SOL associated with initial forward acceleration of the lower legs. The EMG responses consisted of an initial phasic discharge followed by a more prolonged one. These responses differ from the pattern of automatic postural responses that follow displacements at the level of the ankles, and it is unlikely that proprioceptive afferents excited by ankle movement had a role in the initial responses. Vision and surface properties had only minor effects. Perturbations of the upper trunk evoke stereotyped compensatory postural responses for each direction of perturbation. For posterior perturbations, EMG onset occurs earlier than for voluntary responses.Electronic supplementary materialThe online version of this article (doi:10.1007/s00221-015-4442-2) contains supplementary material, which is available to authorized users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.