Abstract

Postural control in the sagittal plane was evaluated in 22 patients with chronic anterior cruciate ligament (ACL) deficiency and the result was compared to that of a control group of 20 uninjured subjects. Measurement of the body sway was done on a fixed and sway-referenced force plate in both single-limb and two-limb stance, with the eyes open and closed, respectively. Further, an analysis of the postural reactions to perturbations backwards and forwards, respectively, was made in single-limb stance. The results demonstrated statistically significant deficits of the postural control in the patient group compared to the control group, but also within the patient group. There was a significantly higher body sway within the patient group when standing on a stable support surface on the injured limb than standing on the uninjured limb with the eyes open, but no difference with the eyes closed. When standing on a stable support surface, there was a significantly higher body sway in the patient group standing on the injured leg than in the control group, both with eyes open and closed. The patient group also showed a significantly impaired postural control compared to the control group when standing on the uninjured leg with the eyes closed. There was no difference between the groups in the two-limb stance. When standing on the sway-referenced support surface, the patient group had a significantly larger body sway than the control group when the eyes were open, but there was no significant difference between the groups with the eyes closed. The measurement of the postural corrective responses to perturbations backwards and forwards showed that the reaction time measured from the initiation of the force plate translation, and the amplitude of the body sway was significantly greater in the patient group than in the control group. We conclude that patients with a continuing chronic ACL insufficiency several years after injury have an impaired postural control in the antero-posterior direction in single-limb stance on their injured leg. They also show a greater body sway and a prolonged reaction time when subjected to antero-posterior perturbations when standing on their injured leg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.