Abstract
The tendency for movements of the upper limbs to be drawn systematically toward one another and to follow similar spatiotemporal trajectories is well known. Although suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. In general, however, the task-related factors that determine the degree of coupling between the upper limbs and the mechanisms that mediate bilateral interactions between neural pathways projecting to the muscles of the arm and hand are not yet well understood. We present evidence that the postural context in which human participants perform upper limb movements determines the relative stability of patterns of bimanual coordination. Manipulation of the axes of rotation of forearm movements reversed the relative stability of simultaneous and alternating patterns of bimanual coordination. Transcranial magnetic stimulation of motor cortex revealed that these manipulations of postural context altered the crossed modulation of excitability in corticospinal pathways that arises from movement of the opposite limb. Furthermore, modulation of responses to electrical stimulation of the cervicomedullary junction indicated that crossed modulation was also expressed at the level of the spinal motoneurons. Our data support the view that crossed modulation of excitability in corticospinal pathways mediates the stability of bimanual coordination. Furthermore, task-related factors that are sufficient to give rise to changes in the stability of bimanual coordination are accompanied by crossed modulation of excitability at multiple levels of the neuraxis, indicative of a failure of inhibitory control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.