Abstract
Free radicals are conventionally detected by electron paramagnetic resonance (EPR) spectroscopy after being trapped as spin adducts. Albeit this technique has demonstrated utmost efficacy in studying free radicals, its application to biological settings is intrinsically hampered by the inevitable bioreduction of radical-derived paramagnetic adducts. Herein, we describe a reliable technique to detect and quantify free radical metabolites, wherein reduced alkyl- and phenyl-5,5-dimethyl-1-pyrroline N-oxide (DMPO) adducts are converted into ultrastable N-naphthoate esters. To mimic the ubiquitous in vivo microenvironment, bioreductants, exogenous thiols, and sodium borohydride were studied. Nitroxyl reduction was confirmed using EPR and triphenyltetrazolium chloride. The formation of the N-naphthoyloxy derivatives was established by liquid chromatography/mass spectrometry (LC/MS). The derivatives were chromatographed using a binary eluent. HPLC and internal standards were synthesized using Grignard addition. The labeled DMPO adduct is (1) fluorescent, (2) stable as opposed to nitroxyl radical adducts, (3) biologically relevant, and (4) excellently chromatographed. Applications encompassed chemical, biochemical, and biological model systems generating C-centered radicals. Different levels of phenyl radicals produced in situ from whole blood were successfully determined. The method is readily applicable to the detection of hydroxyl radical. Analogously, DMPO, the spin trap, could be detected with extreme sensitivity suitable for in vivo applications. The developed method proved to be a viable alternative to EPR, where for the first time the reductive loss of paramagnetic signals of DMPO-trapped free radicals is transformed into fluorescence emission. We believe the proposed methodology could represent a valuable tool to probe free radical metabolites in vivo using DMPO, the least toxic spin trap.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.