Abstract

The ability of the fungal pathogen Cryptococcus neoformans to evade the mammalian innate immune response and cause disease is partially due to its ability to respond to and survive nitrosative stress. In this study, we use proteomic and genomic approaches to elucidate the response of C. neoformans to nitric oxide stress. This nitrosative stress response involves both transcriptional, translational, and posttranslational regulation. Proteomic and genomic analyses reveal changes in expression of stress response genes. In addition, genes involved in cell wall organization, respiration, signal transduction, transport, transcriptional control, and metabolism show altered expression under nitrosative conditions. Posttranslational modifications of transaldolase (Tal1), aconitase (Aco1), and the thiol peroxidase, Tsa1, are regulated during nitrosative stress. One stress-related protein up-regulated in the presence of nitric oxide stress is glutathione reductase (Glr1). To further investigate its functional role during nitrosative stress, a deletion mutant was generated. We show that this glr1Delta mutant is sensitive to nitrosative stress and macrophage killing in addition to being avirulent in mice. These studies define the response to nitrosative stress in this important fungal pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.