Abstract

Infected cell protein 22 (ICP22) is posttranslationally phosphorylated by the viral kinases encoded by U(S)3 and U(L)13 and nucleotidylylated by casein kinase II. In rabbit and rodent cells and in primary human fibroblasts infected with mutants from which the alpha 22 gene encoding ICP22 had been deleted, a subset of late (gamma(2)) gene products exemplified by U(L)38 and U(S)11 proteins are expressed at a reduced level, as measured by the accumulation of both mRNA and protein. The same phenotype was observed in cells infected with mutants lacking the U(L)13 gene. The focus of this report is on three serine- and threonine-rich domains of ICP22. Two of these domains are homologs located between residues 38 to 66 and 300 to 328. The third domain is near the carboxyl terminus and contains the sequence T374SS. The results were as follows. (i) Alanine substitutions in the amino-terminal homolog precluded the posttranslational processing of ICP22 in rabbit skin cells and in Vero cells but had no effect on the accumulation of either U(S)11 or U(L)38 protein. (ii) Alanine substitutions in the carboxyl-terminal homolog had no effect on posttranslational processing of ICP22 accumulating in Vero cells but precluded full processing of ICP22 accumulating in rabbit skin cells. The effect on accumulation of U(L)38 and U(S)11 proteins was insignificant in Vero cells and minimal in rabbit skin cells. (iii) Substitutions of alanine for the threonine and serines in the third domain precluded full processing of ICP22 and caused a reduction of accumulation of U(S)11 and U(L)38 proteins. These results indicate the following. (i) The posttranslational processing of ICP22 is sensitive to mutations within the domains of ICP22 tested and is cell-type dependent. (ii) Posttranslational processing of ICP22 is not required for accumulation of U(L)38 and U(S)11 proteins to the same level as that seen in cells infected with the wild-type virus. (iii) The T374SS sequence shared by ICP22 and the U(S)1.5 proteins is essential for the accumulation of a subset of gamma(2) proteins exemplified by U(S)11 and U(L)38 and is the first step in mapping of the sequences necessary for optimal accumulation of U(S)11 and U(L)38 proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.