Abstract

Mouse (m) and human (h) urocortin 2 (Ucn 2) were identified by molecular cloning strategies and the primary sequence of their mature forms postulated by analogy to closely related members of the corticotropin-releasing factor (CRF) neuropeptide family. Because of the paucity of Ucn 2 proteins in native tissues, skin, muscle, and pancreatic cell lines were transduced with lentiviral constructs and secretion media were used to isolate and characterize Ucn 2 products and study processing. Primary structures were assigned using a combination of Edman degradation sequencing and mass spectrometry. For mUcn 2, transduced cells secreted a 39 amino acid peptide and the glycosylated prohormone lacking signal peptide; both forms were C-terminally amidated and highly potent to activate the type 2 CRF receptor. Chromatographic profiles of murine tissue extracts were consistent with cleavage of mUcn 2 prohormone to a peptidic form. By contrast to mUcn 2, mammalian cell lines transduced with hUcn 2 constructs secreted significant amounts of an 88 amino acid glycosylated hUcn 2 prohormone but were unable to further process this molecule. Similarly, WM-266-4 melanoma cells that express endogenous hUcn 2 secreted only the glycosylated prohormone lacking the signal peptide and unmodified at the C terminus. Although not amidated, hUcn 2 prohormone purified from overexpressing lines activated CRF receptor 2. Hypoxia and glycosylation, paradigms that might influence secretion or processing of gene products, did not significantly impact hUcn 2 prohormone cleavage. Our findings identify probable Ucn 2 processing products and should expedite the characterization of these proteins in mammalian tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call