Abstract
In the mammalian CNS, glutamate is the major excitatory neurotransmitter. Ionotropic glutamate receptors (iGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Regulation of glutamatergic synapses is critical for higher brain functions including neural communication, memory formation, learning, emotion, and behaviour. Many previous studies have shown that post-translational protein S-palmitoylation, the only reversible covalent attachment of lipid to protein, regulates synaptic expression, intracellular localization, and membrane trafficking of iGluRs and their scaffolding proteins in neurons. This modification mechanism is extremely conserved in the vertebrate lineages. The failure of appropriate palmitoylation-dependent regulation of iGluRs leads to hyperexcitability that reduces the maintenance of network stability, resulting in brain disorders, such as epileptic seizures. This review summarizes advances in the study of palmitoylation of iGluRs, especially AMPA receptors and NMDA receptors, and describes the current understanding of palmitoylation-dependent regulation of excitatory glutamatergic synapses. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.