Abstract

The Escherichia coli umuDC (pol V) gene products participate in both a DNA damage checkpoint control and translesion DNA synthesis. Interactions of the two umuD gene products, the 139-aa UmuD and the 115-aa UmuD' proteins, with components of the replicative DNA polymerase (pol III), are important for determining which biological role the umuDC gene products will play. Here we report our biochemical characterizations of the interactions of UmuD and UmuD' with the pol III beta processivity clamp. These analyses demonstrate that UmuD possesses a higher affinity for beta than does UmuD' because of the N-terminal arm of UmuD (residues 1-39), much of which is missing in UmuD'. Furthermore, we have identified specific amino acid residues of UmuD that crosslink to beta with p-azidoiodoacetanilide, defining the domain of UmuD important for the interaction. We have recently proposed a model for the solution structure of UmuD(2) in which the N-terminal arm of each protomer makes extensive contacts with the C-terminal globular domain of its intradimer partner, masking part of each surface. Taken together, our findings suggest that UmuD(2) has a higher affinity for the beta-clamp than does UmuD'(2) because of the structures of its N-terminal arms. Viewed in this way, posttranslational modification of UmuD, which entails the removal of its N-terminal 24 residues to yield UmuD', acts in part to attenuate the affinity of the umuD gene product for the beta-clamp. Implications of these structure-function analyses for the checkpoint and translesion DNA synthesis functions of the umuDC gene products are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.