Abstract

The ras oncogene products require membrane localization for their function, and this is thought to be accomplished by the addition of a palmitoyl group to a cysteine residue near the carboxyl terminus of the nascent chain. A lipidated carboxyl-terminal cysteine residue is also found in sequence-related yeast sex factors, and in at least two cases, the alpha-carboxyl group is also methyl esterified. To determine if ras proteins are themselves modified by a similar type of methylation reaction, we incubated rat embryo fibroblasts transformed with p53 and activated Ha-ras oncogenes with L-[methyl-3H]methionine under conditions in which the isotope was converted to the methyl donor S-adenosyl-L-[methyl-3H]methionine. By using an assay that detects methyl ester linkages, we found that immunoprecipitated ras proteins are in fact esterified and that the stability of these esters is consistent with a carboxyl-terminal localization. This methylation reaction may be important in regulating the interaction of ras proteins with plasma membrane components. The presence of analogous carboxyl-terminal tetrapeptide sequences in other proteins may provide a general recognition sequence for lipidation and methylation modification reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.