Abstract

AA amyloidosis is a disease caused by extracellular deposition of insoluble β-pleated sheet fibrils composed of amyloid A (AA) protein, an amino (N)-terminal fragment of serum amyloid A (SAA). The deposits disrupt tissue structure and compromise organ function. Although the disease is systemic, deposition in kidney glomeruli is the most common manifestation. The leading cause of AA amyloidosis is sustained or recurrent inflammation accompanied by elevated levels of SAA. Factors determining the conversion of SAA to AA amyloid fibrils have yet to be fully resolved. Herein, we present liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis of AA proteins purified from eight patients with AA amyloidosis. For the first time, post-translational modifications (PTM), including carbamylation, acetylation and oxidation, were identified on AA peptides; all eight samples showed some degree of PTM. The amyloid in 6 samples comprised peptides derived from SAA1 with few or none from SAA2, while the other two samples contained both SAA1- and SAA2-derived peptides. N-terminal AA peptides beginning with Arg1 as well as AA peptides starting with Ser2 were present in five of the eight samples, while all or nearly all of the N-terminal peptides in the other three samples lacked Arg1. These data demonstrate that multiple species of AA amyloid proteins can comprise the subunits in amyloid fibrils and raise the possibility that PTM may play a role in fibrillogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call