Abstract

Rhizobial FixK-like proteins play essential roles in activating genes for endosymbiotic life in legume root nodules, such as genes for micro-oxic respiration. In the facultative soybean symbiont, Bradyrhizobium japonicum, the FixK(2) protein is the key player in a complex regulatory network. The fixK(2) gene itself is activated by the 2-component regulatory system FixLJ in response to a moderate decrease of the oxygen tension, and the FixK(2) protein distributes and amplifies this response to the level of approximately 200 target genes. Unlike other members of the cAMP receptor protein family, to which FixK(2) belongs, the FixK(2) protein does not appear to be modulated by small effector molecules. Here, we show that a critical, single cysteine residue (C183) near the DNA-binding domain of FixK(2) confers sensitivity to oxidizing agents and reactive oxygen species. Oxidation-dependent inactivation occurs not only in vitro, as shown with cell-free transcription assays, but also in vivo, as shown by microarray-assisted transcriptome analysis of the FixK(2) regulon. The oxidation mechanism may involve a reversible dimerization by intermolecular disulfide-bridge formation and a direct, irreversible oxidation at the cysteine thiol, depending on the oxidizing agent. Mutational exchange of C183 to alanine renders FixK(2) resistant to oxidation, yet allows full activity, shown again both in vitro and in vivo. We hypothesize that posttranslational modification by reactive oxygen species is a means to counterbalance the cellular pool of active FixK(2), which would otherwise fill unrestrictedly through FixLJ-dependent synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.