Abstract

The transcription factor nuclear factor-kappa B (NF-κB) controls a number of essential cellular functions, including the immune response, cell proliferation, and apoptosis. NF-κB signaling must be engaged temporally and spatially and well orchestrated to prevent aberrant activation because loss of normal regulation of NF-κB is a major contributor to a variety of pathological diseases, including inflammatory diseases, autoimmune diseases, and cancers. Thus, understanding the molecular mechanisms controlling NF-κB activation is an important part of treatment of these relevant diseases. Although NF-κB transcriptional activity is largely regulated by nuclear translocation, post-translational modification of NF-κB signaling components, including phosphorylation, ubiquitination, acetylation, and methylation, has emerged as an important mechanism affecting activity. Many proteins have been shown to ubiquitinate and regulate NF-κB activation at the receptor signaling complex in response to a variety of ligands, such as tumor necrosis factor, interleukin-1, and Toll-like receptor ligands. In this review, we discuss our current knowledge of ubiquitination patterns and their functional role in NF-κB regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.