Abstract
Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When re-sources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA). However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.
Highlights
The process of ribosome synthesis is conserved from prokaryotes to eukaryotes
It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA
We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-ribosomal RNA (rRNA) processing pathways depending on the environmental conditions
Summary
The process of ribosome synthesis is conserved from prokaryotes to eukaryotes. It starts by the transcription of a large pre-rRNA that is subsequently processed into mature rRNAs and assembled with ribosomal proteins into the ribosomal subunits. Post-transcriptional regulation of ribosome biogenesis in yeast * Corresponding Author: Martin Koš, Tel: +49 6221 544151; E-mail: martin.kos@bzh.uni-heidelberg.de
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.