Abstract

The biggest challenge for the deployment of Deep Neural Networks (DNNs) close to the generated data on edge devices is their size, i.e., memory footprint and computational complexity. Both are significantly reduced with quantization. With the resulting lower word-length, the energy efficiency of DNNs increases proportionally. However, lower word-length typically causes accuracy degradation. To counteract this effect, the quantized DNN is retrained. Unfortunately, training costs up to 5000× more energy than the inference of the quantized DNN. To address this issue, we propose a post-training quantization flow without the need for retraining. For this, we investigated different quantization options. Furthermore, our analysis systematically assesses the impact of reduced word-lengths of weights and activations revealing a clear trend for the choice of word-length. Both aspects have not been systematically investigated so far. Our results are independent of the depth of the DNNs and apply to uniform quantization, allowing fast quantization of a given pre-trained DNN. We excel state-of-the-art for 6 bit by 2.2% Top-1 accuracy for ImageNet. Without retraining, our quantization to 8 bit surpasses floating-point accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.