Abstract
Memory consolidation studies, including those examining the role of the basolateral amygdala (BLA), have traditionally used techniques limited in their temporal and spatial precision. The development of optogenetics provides increased precision in the control of neuronal activity that can be used to address the temporal nature of the modulation of memory consolidation. The present experiments, therefore, investigated whether optogenetically stimulating and inhibiting BLA activity immediately after training on an inhibitory avoidance task enhances and impairs retention, respectively. The BLA of male Sprague-Dawley rats was transduced to express either ChR2(E123A) or archaerhodopsin-3 from the Halorubrum sodomense strain TP009 (ArchT). Immediately after inhibitory avoidance training, rats received optical stimulation or inhibition of the BLA, and 2 d later, rats' retention was tested. Stimulation of ChR2(E123A)-expressing neurons in the BLA using trains of 40-Hz light pulses enhanced retention, consistent with recording studies suggesting the importance of BLA activity at this frequency. Light pulses alone given to control rats had no effect on retention. Inhibition of ArchT-expressing neurons in the BLA for 15 min, but not 1 min, significantly impaired retention. Again, illumination alone given to control rats had no effect on retention, and BLA inhibition 3 h after training had no effect. These findings provide critical evidence of the importance of specific frequency patterns of activity in the BLA during consolidation and indicate that optogenetic manipulations can be used to alter activity after a learning event to investigate the processes underlying memory consolidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.