Abstract

Isotropic triaxial compression tests were conducted on five different, fairly uniform sands, with mean grain sizes between 2.8 and 0.105 mm, to determine the effects of effective confining pressure, mean grain size, and relative density on unit membrane penetration. Volume changes due to membrane penetration were determined using sand specimens with identical void ratios and height to diameter ratios but with different sizes, surface areas, and volumes. A semiempirical exponential relationship with respect to effective mean stress was used to model unit membrane penetration, and the results were compared with some other models proposed in the literature. A posttesting correction procedure was formulated to calculate pore-pre~sure accumulation in monotonic and cyclic tests, taking into consideration coupling between membrane complIance and pore-pressure accumulation. The procedure developed is based on membrane flexibility and soil com­ pressibility expressed as semiempirical exponential relationships with respect to effective mean stress. The applicability of the model is shown based on undrained monotonic and cyclic tests and with respect to some methods proposed in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.