Abstract

Metal-organic frameworks (MOFs) are emerging porous materials that can serve as carriers of photosensitizers and photothermal agents. Meanwhile, a large number of active sites in MOFs endow them with the characteristics of modification by postsynthetic modification. Herein, a dual-modal PDT/PTT therapeutic agent HMIL-121-acriflavine-tetrakis (4-amoniophenyl) porphyrin (HMIL-ACF-Por), prepared by the postsynthetic modification of the MOF (HMIL-121), was reported for antibacterial applications. The prepared HMIL-ACF-Por enables the generation of abundant reactive oxygen species, including the superoxide anion radical (O2-) and singlet oxygen (1O2), and thermal energy under 808 nm NIR laser irradiation. HMIL-ACF-Por showed good antibacterial ability against Escherichia coli and Staphylococcus aureus in vitro. Meanwhile, HMIL-ACF-Por can effectively inhibit the inflammatory response caused by bacterial infection and accelerate S. aureus-infected wound healing under laser irradiation owing to the synergistic effect of photodynamic therapy (PDT) and photothermal therapy (PTT). These results demonstrate that HMIL-ACF-Por is a promising PDT/PTT therapeutic agent. This work also contributes to offering an effective solution for treating bacterial infections and promotes the application of MOF-based materials in biomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call