Abstract

In recent years, several approaches have been applied to modify metal-organic frameworks (MOFs) owing to their excellent structural tunability such as higher extraction efficiency than that of primitive crystals. Herein, Zr-based MOFs (UiO-66-NH2) with a suitable size modulated by acetic acid were successfully synthesized for effective DNA extraction. The bonding conformations and adsorption mechanism indicated a high affinity between UiO-66-NH2 and the DNA molecules. Furthermore, Fe3O4 nanoparticles were immobilized on the UiO-66-NH2 surface to allow MOFs with magnetism. The magnetic zirconium-organic framework (MZMOF) retained the intact structure of MOFs and simplified subsequent extraction operations. In the DNA recovery investigation, MZMOF showed high recovery efficiency for both short-stranded DNA (90.4%) and pseudovirus DNA (95.1%). In addition, it showed superior DNA extraction efficiency from plasma (57.6%) and swab preservation solution (86.5%). The prepared MZMOF was employed for highly specific extraction of viral DNA and cfDNA from samples. To further simplify the extraction process, MZMOF was applied to immiscible phase filtration assisted by a surface tension (IFAST) chip for facilitating rapid DNA extraction with sensitive point-of-care testing. The developed MZMOF-based extraction method has significant potential for increasing the demand for rapid and efficient nucleic acid extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.