Abstract

Core-shell magnetic covalent organic framework (COF) materials were prepared, followed by shell material functionalization with different organic ligands, including thiosemicarbazide, through a postsynthetic modification approach. The structures of the prepared samples were characterized with various techniques, including powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), photoinduced force microscopy (PiFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and solid 13C NMR. PXRD and BET studies revealed that the crystalline and porous nature of the functionalized COFs was well maintained after three steps of postsynthetic modification. On the other hand, solid 13C NMR, TGA, and PiFM analyses confirmed the successful functionalization of COF materials with good covalent linkage connectivity. The use of the resulting functionalized magnetic COF for selective and ultrafast adsorption of Hg(II) has been investigated. The observations displayed rapid kinetics with adsorption dynamics conforming to the quasi-second-order kinetic model and the Langmuir adsorption model. Furthermore, this prepared crystalline magnetic material demonstrated a high Langmuir Hg(II) uptake capacity, reaching equilibrium in only 5 min. Thermodynamic calculations proved that the adsorption process is endothermic and spontaneous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.