Abstract
We report here on the strategy for the preparation of a series of electrochromic (EC) materials in green shades designed for camouflage purposes. This top-down post-synthetic modification provides access to new EC materials by fine modulation of the color of the surface-confined metalorganic monolayer pre-deposited on indium tin oxide screen-printed supports. Selective on-surface N-quaternization of the outer pyridine unit of the EC metal complex covalently embedded onto an enhanced surface area electrode results in a bathochromic shift of the absorbance signal as well as visual color change from blue to different shades of green. When assembled into solid-state EC devices (ECDs), the materials demonstrate high color differences between colored and bleached states and significant differences in optical density. Upon electrochemical switching, the ECDs initially featuring different shades of green become yellowish or clay. The accessible gamut of colors, fulfilling the requirements for chameleon-like camouflage materials, is able to mimic conditions of various natural environments including forests and sands. Notably, ECDs demonstrate high long-term durability (95% retention of the performance after 3300 cycles), fast coloration (0.6-1.1 s), and bleaching (1.2-3.3 s) times and outstanding coloration efficiencies of 1018-1513 cm2/C. Importantly, post-synthetic N-quaternization/color tuning does not deteriorate the performance of the resulting EC materials and devices as judged by cyclic voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. This work adds to the limited number of reports that explore color tuning of EC molecular layers via on-surface modification with the aim to access new non-symmetric materials. Notably, the facile and straightforward technology presented here allows the creation of green-colored EC materials that are difficult to prepare in other ways.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.