Abstract
The responses of 111 postsynaptic dorsal column (PSDC) neurons in the cervical spinal cord and 51 cuneate neurons with receptive fields on the glabrous skin of the forepaw were studied in anesthetized raccoons using extracellular recording techniques. The PSDC neurons had larger receptive fields than the cuneate neurons, but in both groups the fields never extended onto hairy skin. PSDC and cuneate neurons had approximately the same mean latency to electrical stimulation of the receptive field, but PSDC neurons had significantly lower thresholds. The majority of both PSDC and cuneate neurons also responded to electrical stimulation of an adjacent digit, even though they did not respond to mechanical stimulation of that digit. Cross-correlation analysis of the activity of 51 pairs of PSDC and cuneate neurons recorded simultaneously revealed a significant interaction in 26 pairs during spontaneous activity. In 20 of these neuron pairs, the probability that the cuneate neuron would fire was greater after the PSDC neuron had fired (suggesting a spinocuneate interaction), five pairs showed an interaction in the opposite (cuneospinal) direction, and one pair had a significant inhibitory interaction. These interactions occurred more often when the receptive fields of the two neurons were overlapping than when their fields were on adjacent digits. Frequency response analysis revealed greater coherence for those pairs showing a spinocuneate interaction than for those with a cuneospinal interaction. These results support the hypothesis that the PSDC system exerts a tonic facilitatory effect on cuneate neurons and that there may be some somatotopic organization to the interactions. However, the similar response latencies of the two groups of neurons makes it unlikely that PSDC neurons could contribute to the rapid initial processing of cutaneous information by the cuneate nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.