Abstract

In a previous study, we reported evidence for correlations between the firing of postsynaptic dorsal column (PSDC) neurons and cuneate neurons with overlapping receptive fields on the glabrous skin of the raccoon forepaw. The evidence was based on cross-correlation and frequency response analyses of spontaneously firing neurons. However, cross-correlation without white noise Gaussian analog inputs or Poisson distributed pulse train inputs is difficult to interpret because of the inherent convolution with the autocorrelation of the unknown input signals. While the data suggested positive correlations in the spinocuneate direction for most neuron pairs, we could not estimate the temporal characteristics of these putative connections. We have now re-analyzed these data using a parallel-cascade method to estimate the first- and second-order kernels of a Volterra series approximation to the spinocuneate system. This unbiased analysis suggests that a positive correlation occurs after about 5 ms, probably followed by a negative correlation at about 12 ms. Second-order kernels also had repeatable structure, indicating dual pathways with time separations of at least 10 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call