Abstract
A correlated intracellular and extracellular study of lumbar motoneuron excitability during sleep and wakefulness was performed in the chronic, unanesthetized, undrugged, normally respiring cat. Experiments were designed to reveal the extent to which hypotonia during active sleep in mammals is dependent on postsynaptic inhibition of somatic motoneurons. Variations in the antidromic field potential, antidromic and orthodromic spike, EPSP, membrane input resistance and rheobasic current were studied. No change in motoneuron excitability occurred when quiet wakefulness was compared to quiet sleep. A decrease in excitability was present, due to postsynaptic inhibition, during active sleep. Further phasic decreases in excitability, also due to postsynaptic inhibition, occurred during active sleep in conjunction with clusters of rapid eye movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.