Abstract

The present investigation was undertaken to study the nature of neuro-melanophore junction in the white-spotted rabbit fish Siganus canaliculatus. In vitro experiments using split fin preparation indicated that melanophores of S. canaliculatus are highly responsive to potassium ions and adrenergic agonists. Potassium ions and the adrenergic agonists induced prompt melanosome aggregation that could be competitively blocked by yohimbine (alpha-2 specific adrenergic antagonist) and phentolamine (non-specific alpha adrenergic antagonist). The melanophore responses to repeated potassium stimulation (up to 20 stimuli) did not show any sign of fatigue. However, statistically significant enhancement was observed in responses to potassium that followed the first five stimulations. Adrenergic agonists acted in a time and concentration-dependent manner and their relative potency had the following rank order: clonidine (alpha-2 specific agonist) > norepinephrine (non-specific adrenergic agonist) > phenylephrine (alpha-1 specific agonist) > methoxamine (alpha-1-specific agonist). Yohimbine exerted a more potent inhibiting effect on norepinephrine induced melanosome aggregation compared to phentolamine. Prazosine (alpha-1 specific antagonist) had no effect on such aggregation. Chemically denervated melanophores displayed hypersensitivity to alpha-adrenergic agonists but were refractive to potassium ion stimulation. The refractivity of denervated melanophores to potassium indicates the effect of potassium ion is not direct on melanophores but it is rather through depolarization effect of potassium on the neuro-melanophore peripheral sympathetic fibers and hence release of norepinephrine. In denervated melanophores, similar to intact melanophores, only phentolamine and yohimbine but not prazosine, significantly inhibited melanosome aggregation effect of norepinephrine, indicating that norepinephrine effect is through postsynaptic alpha-2 adrenoceptors. The present data demonstrate that the nature of melanophore innervation in this teleost is adrenergic and neuro-melanophore signals mediating melanosome aggregation are transmitted through alpha-2 postsynaptic adrenoceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call