Abstract

Cell-based biosensing is a “smart” way to obtain efficacy-information on the effect of applied chemical on cellular biological cascade. We have proposed an engineered post-synapse model cell-based biosensors to investigate the effects of chemicals on ionotropic glutamate receptor (GluR), which is a focus of attention as a molecular target for clinical neural drug discovery. The engineered model cell has several advantages over native cells, including improved ease of handling and better reproducibility in the application of cell-based biosensors. However, in general, cell-based biosensors often have low signal-to-noise (S/N) ratios due to the low level of cellular responses. In order to obtain a higher S/N ratio in model cells, we have attempted to design a tactic model cell with elevated cellular response. We have revealed that the increase GluR expression level is not directly connected to the amplification of cellular responses because the saturation of surface expression of GluR, leading to a limit on the total ion influx. Furthermore, coexpression of GluR with a voltage-gated potassium channel increased Ca2+ ion influx beyond levels obtained with saturating amounts of GluR alone. The construction of model cells based on strategy of amplifying ion flux per individual receptors can be used to perform smart cell-based biosensing with an improved S/N ratio.

Highlights

  • Cultured mammalian cell-based biosensors have been developed to determine the effects of extracellular stimuli on cellular function in basic research fields, and drug discovery [1,2]

  • The approach involves attempting to increase the ion flux level per individual receptor, which is directly linked to amplification of cellular responses

  • As the GFP fluorescence intensity correlates with the fluorescence intensity of immuno-staining, GFP can be used as a reporter of the level of glutamate receptor (GluR) expression

Read more

Summary

Introduction

Cultured mammalian cell-based biosensors have been developed to determine the effects of extracellular stimuli on cellular function in basic research fields, and drug discovery [1,2]. These are a smart way to screen lead compounds on the basis of their effects on metabolic/catabolic cascades [3,4,5]. The post-synapse model cells express ionotropic glutamate receptor (GluR) on their membrane surface. As such, these cells can recognize either the agonistic and antagonistic activity on the basis of a change in the ion flux profile [12]. The approach involves attempting to increase the ion flux level per individual receptor, which is directly linked to amplification of cellular responses (ion influx through GluR)

Chemicals
Cell Culture and Transfection
Immuno-Fluorescence Staining
Fluorescence Measurement of Ion Flux
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.