Abstract
It has recently been found that the evolution of the preparation of a strong earthquake (EQ), as it is monitored through fracture-induced electromagnetic emissions (EME) in the MHz band, presents striking similarity with the evolution of a thermal system as temperature drops, since distinct steps of the evolution of the phenomenon of spontaneous symmetry breaking (SSB) can be identified. Here, the study of fracture-induced EME in the MHz band in analogy to thermal systems is extended to the phase of local fracture structures that follow after the SSB (and the occurrence of the main EQ). By comparing fracture-induced MHz EME associated with the strongest EQs (MW=6.9) that occurred in Greece during the last twenty years with the 3D Ising model, a way to distinguish whether a possible identification of post-SSB power-laws immediately after a very strong EQ is a sign for the preparation of a new strong EQ or not is provided. In the suggested approach, the time series analysis method known as the method of critical fluctuations is used, enhanced by the autocorrelation function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.