Abstract

We present a new mechanism for generating the baryon asymmetry of the Universe directly in the decay of a singlet scalar field S(r) with a weak scale mass and a high dimensional baryon number-violating coupling. Unlike most currently popular models, this mechanism, which becomes effective after the electroweak phase transition, does not rely on the sphalerons for inducing a nonzero baryon number. CP asymmetry in S(r) decay arises through loop diagrams involving the exchange of W+/- gauge bosons and is suppressed by light quark masses, leading naturally to a value of eta(B) approximately 10(-10). The simplest realization of this idea which uses a six quark DeltaB=2 operator predicts colored scalars accessible to the CERN Large Hadron Collider and neutron-antineutron oscillation within reach of the next-generation experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.