Abstract
In addition to shock effects in olivine, plagioclase, orthopyroxene and Ca-pyroxene, petrographic shock indicators in equilibrated ordinary chondrites (OC) include chromite veinlets, chromite-plagioclase assemblages, polycrystalline troilite, metallic Cu, irregularly shaped troilite grains within metallic Fe-Ni, rapidly solidified metal-sulfide intergrowths, martensite and various types of plessite, metal-sulfide veins, large metal and/or sulfide nodules, silicate melt veins, silicate darkening, low-Ca clinopyroxene, silicate melt pockets, and large regions of silicate melt. The presence of some of these indicators in every petrologic type-4 to -6 ordinary chondrite demonstrates that collisional events caused all equilibrated OC to reach shock stages S3-S6. Those type-4 to -6 OC that are classified as shock-stage S1 (on the basis of sharp optical extinction in olivine) underwent postshock annealing due to burial beneath materials heated by the impact event. Those type-4 to -6 OC that are classified S2 (on the basis of undulose extinction and lack of planar fractures in olivine) were shocked to stage S3-S6, annealed to stage S1 and then shocked again to stage S2. Some OC were probably shocked to stage ≥ S3 after annealing. It seems likely that many OC experienced multiple episodes of shock and annealing. Because 40Ar- 39Ar chronological data indicate that MIL 99301 (LL6, S1) was annealed ∼ 4.26 Ga ago, presumably as a consequence of a major impact, it seems reasonable to suggest that other equilibrated S1 and S2 OC (which contain relict shock features) were also annealed by impacts. Because some type-6 S1 OC (e.g., Guareña, Kernouvé, Portales Valley, all of which contain relict shock features) were annealed 4.44– 4.45 Ga ago (during a period when impacts were prevalent and most OC were thermally metamorphosed), it follows that impact-induced annealing could have contributed significantly to OC thermal metamorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.