Abstract

Entanglement is an invaluable resource for fundamental tests of physics and the implementation of quantum information protocols such as device-independent secure communications. In particular, time-bin entanglement is widely exploited to reach these purposes both in free space and optical fiber propagation, due to the robustness and simplicity of its implementation. However, all existing realizations of time-bin entanglement suffer from an intrinsic postselection loophole, which undermines their usefulness. Here, we report the first experimental violation of Bell's inequality with "genuine" time-bin entanglement, free of the postselection loophole. We introduced a novel function of the interferometers at the two measurement stations, that operate as fast synchronized optical switches. This scheme allowed us to obtain a postselection-loophole-free Bell violation of more than 9 standard deviations. Since our scheme is fully implementable using standard fiber-based components and is compatible with modern integrated photonics, our results pave the way for the distribution of genuine time-bin entanglement over long distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call