Abstract

AbstractWe report Global Positioning System (GPS) measurements of postseismic deformation following the 2015 Mw7.8 Gorkha (Nepal) earthquake, including previously unpublished data from 13 continuous GPS stations installed in southern Tibet shortly after the earthquake. We use variational Bayesian Independent Component Analysis (vbICA) to extract the signal of postseismic deformation from the GPS time series, revealing a broad displacement field extending >150 km northward from the rupture. Kinematic inversions and dynamic forward models show that these displacements could have been produced solely by afterslip on the Main Himalayan Thrust (MHT) but would require a broad distribution of afterslip extending similarly far north. This would require the constitutive parameter (a − b)σ to decrease northward on the MHT to ≤0.05 MPa (an extreme sensitivity of creep rate to stress change) and seems unlikely in light of the low interseismic coupling and high midcrustal temperatures beneath southern Tibet. We conclude that the northward reach of postseismic deformation more likely results from distributed viscoelastic relaxation, possibly in a midcrustal shear zone extending northward from the seismogenic MHT. Assuming a shear zone 5–20 km thick, we estimate an effective shear‐zone viscosity of ~3·1016–3·1017 Pa·s over the first 1.12 postseismic years. Near‐field deformation can be more plausibly explained by afterslip itself and implies (a − b)σ ~ 0.5–1 MPa, consistent with other afterslip studies. This near‐field afterslip by itself would have re‐increased the Coulomb stress by ≥0.05 MPa over >30% of the Gorkha rupture zone in the first postseismic year, and deformation further north would have compounded this reloading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call