Abstract

The 2015 Mw 7.8 Gorkha earthquake has not only imposed effective constraints on the geometrical structures, friction behaviours and seismogenic patterns of the Nepal Himalaya thrustsystems but has also provided valuable insights into the uplift mechanism and lithosphere rheology of the Tibetan Plateau. Here, ∼1.6-year GPS observations are used to reveal the postseismic deformation characteristics following the Gorkha earthquake, investigate the ongoing aseismic afterslip on the Main Himalayan Thrust (MHT) fault and constrain the crustal rheology of the Southern Tibetan Plateau. First, afterslip is considered to be solely responsible for the postseismic deformation (afterslip-only model). The results show that afterslip is anticorrelated with peak coseismic slip areas. One high-afterslip-concentration area, with a peak of ∼24 cm, is distributed downdip of the coseismic rupture, as well as in two other regions: one partially overlapping the mainshock rupture, and the other next to the Mw 7.3 aftershock area. Second, the GPS postseismic observations are inverted to jointly investigate afterslip and viscoelastic deformation (multiple-mechanism model). The afterslip inversion results of the above two models are highly consistent, indicating the dominant contribution of afterslip to surface deformation during the ∼1.6-year postseismic period. Considering the interseismic fault coupling and historical seismicity, no appreciable fault slip associated with the Gorkha earthquake is found to occur both updip and west of the mainshock rupture areas. This reveals that the Gorkha earthquake only unzipped the lower edge of the locked portion of the MHT, leaving the shallow portion and western segment of the seismogenic zone still locked and the Nepal region under high seismic risk. The viscoelastic mechanism contributes minorly to surface deformation during the ∼1.6-year postseismic period. The middle-lower crust is assumed to comprise Maxwell material beneath an elastic ∼25-km-thick upper crust and the optimal viscosity is conservatively estimated to be 1.6 × 1019 Pa s beneath the Southern Tibetan Plateau, which should be robustly constrained with more long-term observations, more effective spatial constraints, and more detailed crustal models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call