Abstract

In this work, we revisit the classic problem of site percolation on a regular square lattice. In particular, we investigate the effect of quantization bias errors on percolation threshold predictions for large probability gradients and propose a mitigation strategy. We demonstrate through extensive computational experiments that the assumption of a linear relationship between probability gradient and percolation threshold used in previous investigations is invalid. Moreover, we demonstrate that, due to skewness in the distribution of occupation probabilities visited the average does not converge monotonically to the true percolation threshold. We identify several alternative metrics which do exhibit monotonic (albeit not linear) convergence and document their observed convergence rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.