Abstract

AbstractThis study binder jets a tungsten carbide‐nickel (WC‐Ni) sintered‐agglomerated composite powder, and postprocesses the preforms using an initial sintering step followed by a hot isostatic pressing (HIP) step. The effects of sintering temperatures, sintering durations, and HIP temperatures on notable properties (e.g., porosity, microstructure, hardness, and oxidation behavior) are quantified. The highest average relative density produced in this study was 96.8%, and volumetric shrinkage of these coupons was about 64%. Microstructural characterization shows that the WC grains are homogenously distributed throughout the nickel matrix and grow to an average diameter of 1.6 (a 60% increase) during processing. X‐ray diffraction patterns indicate that no unwanted products were formed. Processed coupons achieved a maximum hardness of 54 Rockwell C, limited by their internal porosity. Oxidation tests result in the production of WO3 and NiWO4 at temperatures above 600°C. Methodologies and results from this study can be leveraged to additively manufacture highly dense, geometrically complex WC‐Ni parts with small carbide grains, low nickel content, desirable microstructure, and suitable functional properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.