Abstract

Prediction of the binding strength of untested ligands is a central issue in structure-based drug design. In order to rapidly screen large compound databases, simple scoring schemes are often used in target-based virtual screening. The resulting scores often correlate poorly with biological affinities. More rigorous scoring methods, such as MM-PB/SA, correlate better with biological data by considering solvation effects and protein flexibility in the calculation of the binding free energy of a ligand. Here we describe the performance of a modified MM-PB/SA method on 222 Wee1 kinase inhibitors (48 pyridopyrimidine and 174 pyrrolocarbazole derivatives). Docking of these inhibitors into the available Wee1 kinase crystal structure yielded a consistent binding mode, and the derived MM-PB/SA models showed a significant correlation between calculated and experimental data (r(2) values between 0.64 and 0.67). Further study of these models on external test sets of Wee1 kinase inhibitors and structurally related decoys showed that a model based on a single kinase-inhibitor conformation can discriminate the active inhibitors from decoys. We also tested whether the linear interaction energy method with continuum electrostatics (LIECE) yields comparable results to MM-PB/SA and whether the LIECE and MM-PB/SA models can be applied for virtual screening of compound libraries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.