Abstract
Abstract Statistical postprocessing is used to translate ensembles of raw numerical weather forecasts into reliable probabilistic forecast distributions. In this study, we examine the use of permutation-invariant neural networks for this task. In contrast to previous approaches, which often operate on ensemble summary statistics and dismiss details of the ensemble distribution, we propose networks that treat forecast ensembles as a set of unordered member forecasts and learn link functions that are by design invariant to permutations of the member ordering. We evaluate the quality of the obtained forecast distributions in terms of calibration and sharpness and compare the models against classical and neural network–based benchmark methods. In case studies addressing the postprocessing of surface temperature and wind gust forecasts, we demonstrate state-of-the-art prediction quality. To deepen the understanding of the learned inference process, we further propose a permutation-based importance analysis for ensemble-valued predictors, which highlights specific aspects of the ensemble forecast that are considered important by the trained postprocessing models. Our results suggest that most of the relevant information is contained in a few ensemble-internal degrees of freedom, which may impact the design of future ensemble forecasting and postprocessing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.