Abstract

An alternative mathematical programming formulation is considered for a mixed-integer optimization problem in queueing networks. The sum of the blocking probabilities of a general service time, single server, and the finite, acyclic queueing network is minimized, and so are the total buffer sizes and the overall service rates. A multi-objective genetic algorithm (MOGA) and a particle swarm optimization (MOPSO) algorithm are combined to solve this difficult stochastic problem. The derived algorithm produces a set of efficient solutions for multiple objectives in the objective function. The implementation of the optimization algorithms is dependent on the generalized expansion method (GEM), a classical tool used to evaluate the performance of finite queueing networks. We carried out a set of computational experiments to attest to the efficacy and efficiency of the proposed approach. In addition, we present a comparative analysis of the solutions before and after post-processing. Insights obtained from the study of complex queue networks may assist the planning of these types of queueing networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.