Abstract

The rat model of perinatal stress (PRS), in which exposure of pregnant dams to restraint stress reduces maternal behavior, is characterized by a metabolic profile that is reminiscent of the "metabolic syndrome". We aimed to identify plasma metabolomic signatures linked to long-term programming induced by PRS in aged male rats. This study was conducted in the plasma and frontal cortex. We also investigated the reversal effect of postpartum carbetocin (Cbt) on these signatures, along with its impact on deficits in cognitive, social, and exploratory behavior. We found that PRS induced long-lasting changes in biomarkers of secondary bile acid metabolism in the plasma and glutathione metabolism in the frontal cortex. Cbt treatment demonstrated disease-dependent effects by reversing the metabolite alterations. The metabolomic signatures of PRS were associated with long-term cognitive and emotional alterations alongside endocrinological disturbances. Our findings represent the first evidence of how early life stress may alter the metabolomic profile in aged individuals, thereby increasing vulnerability to CNS disorders. This raises the intriguing prospect that the pharmacological activation of oxytocin receptors soon after delivery through the mother may rectify these alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call