Abstract

BackgroundThere is limited consensus regarding risk factors for postoperative bleeding. The objective of this work was to investigate the capability of machine learning techniques in combination with practice-based longitudinal electronic medical record data for identifying potential new risk factors for postoperative bleeding and predicting patients at high risk of postoperative bleeding. MethodsA retrospective study was conducted for patients who underwent colorectal surgery 1998–2015 at a single tertiary referral center. Various predictors were extracted from electronic medical record. The outcome of interest was the occurrence of postoperative bleeding within 7 days of surgery. Logistic regression and gradient boosting machine models were trained. Area under the receiver operating curve and area under the precision recall curve were used to evaluate the performance to different models. ResultsOf 13,399 cases undergoing colorectal resection, 1,680 (12.5%) experienced postoperative bleeding. A total of 299 variables were evaluated. Logistic regression and gradient boosting machine models returned an area under the receiver operating curve of 0.735 and 0.822 and area under the precision recall curve of 0.287 and 0.423, respectively. In addition to well-known risk factors for postoperative bleeding, nutrition (ranked third), weakness (ranked fifth), patient mobility (ranked sixth), and activity level (ranked eighth) were found to be novel predictors in the gradient boosting machine model based on permutation importance. ConclusionThe study identified measures of functional capacity of patient as novel predictors of postoperative bleeding. The study found that risk of postoperative bleeding can be assessed, allowing for better use of human resources in addressing this important adverse event after surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.