Abstract

Ruiz de Alegria-Arzaburu, A., Marino-Tapia, I., Silva, R., Pedrozo-Acuna A., 2013. Post-nourishment beach scarp morphodynamics In: Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (eds.), Proceedings 12 th International Coastal Symposium (Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 576-581, ISSN 07490208. Large and persistent beach scarps can be safety hazards to beach users and result in serious social and economic implications. In this study the morphological evolution of beach scarps of large dimensions is examined on a nourished microtidal Caribbean Mexican beach. Beach profiles were measured three-to-four monthly along the beach after the nourishment in December 2009 and over 1.5 years. A beach scarp was defined as a feature with a slope larger than the critical angle of repose of 32° and a minimum height of 0.25 m. The top and bottom positions of the scarps were calculated from the minimum and maximum values of the second derivative of the measured beach profiles (slope gradient). The cross-shore morphological evolution of the scarps was related to wave runup (R2) and tides, and also to both with the contribution of the longshore energy flux (Pl). During calm conditions characterised by longshore uniform mean and maximum R2 of 0.73 and 0.83 m, and Pl=180KN/s, the scarps remained present along the beach. Energetic conditions with mean and maximum R2 of 0.83 and 1.2 m and Pl=400KN/s, increased the longshore rythmicity of the beach and induced significant cross-shore erosion (over 20 m) and the disappearance of ~50% of the scarps. The added contribution of the longshore energy flux, wave runup and tidal elevation explain 40% of the morphological evolution of beach scarps over the study period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call