Abstract
A generalized Postnikov tower (GPT) is defined as a tower of principal fibrations with the classifying maps into generalized Eilenberg–Mac Lane spaces. We study fundamental properties of GPT’s such as their existence, localization and length. We further consider the distribution of torsion in a GPT of a finite complex, motivated by the result of McGibbon and Neisendorfer. We also give an algebraic description of the length of a GPT of a rational space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.