Abstract

Responses of olfactory (OB) bulb mitral cells (MCs) and tufted cells (TCs) are known to depend on prior odor exposure, yet the specific circuit mechanisms underlying these experience-dependent changes are unknown. Here, we show that odor exposure alters one particular circuit element, interglomerular lateral inhibition, which is known to be critical for a variety of OB computations. Early postnatal odor exposure to acetophenone, a ligand of M72 olfactory sensory neurons, increases the strength of M72-mediated lateral inhibition onto TCs, but not MCs, that project to nearby glomeruli. These findings add to a growing list of differences between MCs and TCs suggesting that that these two cell types play distinct roles in odor coding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.