Abstract

Neurofilament proteins (NFPs), the cytoskeletal proteins that are essential for axogenesis and maintenance of neuron shape in the nervous system, were studied for their spatial distributions at nine postnatal days (PN 3, 5, 7, 10, 14, 17, 21, 28, and 120). Simultaneously non-phosphorylated (SMI-32; 150/200 kDa; Sternberger) and phosphorylated (SMI-31; 200 kDa) NFP immunoreactivity in the entire developing rat hippocampus was studied, quantified, and compared to that of mossy fiber (MF) axons and terminals using Neo-Timm's histochemistry, the most selective, sensitive, and reproducible technique. Differential developmental expressions were observed between the two NFP states. SMI-32 was initially expressed on PN 3 only in the perikarya of pyramidal neurons in CA3. As early as PN 5, SMI-31 appeared in the MF pathway, in parallel to the growth of MF axons. By contrast, SMI-32 did not appear at any age in the MF pathway, including the MF terminal zone of stratum lucidum. At PN 14, the distribution of both NFPs in the MF system (MFs and their target neurons, i.e., CA3/CA4 pyramidal neurons and hilar neurons) was nearly complete; however, the peak densities of SMI-32 and SMI-31 were later at PN 21 and statistically equal to the most adult level (PN 120). The temporal regulation and maximal levels of SMI-32 and SMI-31 expressions on MF target neurons (CA3: SMI-32) and in the MF terminal zone (stratum lucidum: SMI-31) were nearly parallel to the progressive and rapid PN growth of the MF axons and terminals occurring between PN 14 and PN 17, suggesting that the mechanisms for maturation of MF synaptogenesis occur after PN 17.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call